and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
↳ QTRS
↳ DependencyPairsProof
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> AND2(eq2(T, Tp), eq2(S, Sp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
REN3(var1(L), var1(K), var1(Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> AND2(eq2(T, Tp), eq2(X, Xp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> AND2(eq2(T, Tp), eq2(L, Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
REN3(var1(L), var1(K), var1(Lp)) -> IF3(eq2(L, Lp), var1(K), var1(Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> AND2(eq2(T, Tp), eq2(S, Sp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
REN3(var1(L), var1(K), var1(Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> AND2(eq2(T, Tp), eq2(X, Xp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> AND2(eq2(T, Tp), eq2(L, Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
REN3(var1(L), var1(K), var1(Lp)) -> IF3(eq2(L, Lp), var1(K), var1(Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
Used ordering: Polynomial Order [17,21] with Interpretation:
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
POL( EQ2(x1, x2) ) = max{0, x2 - 2}
POL( var1(x1) ) = x1 + 3
POL( apply2(x1, x2) ) = x1 + x2 + 2
POL( lambda2(x1, x2) ) = x1 + x2 + 2
POL( cons2(x1, x2) ) = x1 + x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
Used ordering: Polynomial Order [17,21] with Interpretation:
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
POL( EQ2(x1, x2) ) = max{0, x2 - 2}
POL( apply2(x1, x2) ) = x1 + x2 + 3
POL( lambda2(x1, x2) ) = x1 + x2 + 2
POL( cons2(x1, x2) ) = x1 + x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
Used ordering: Polynomial Order [17,21] with Interpretation:
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
POL( EQ2(x1, x2) ) = max{0, x2 - 2}
POL( lambda2(x1, x2) ) = x1 + x2 + 3
POL( cons2(x1, x2) ) = x1 + x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
POL( EQ2(x1, x2) ) = max{0, x2 - 2}
POL( cons2(x1, x2) ) = x1 + x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
Used ordering: Polynomial Order [17,21] with Interpretation:
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
POL( REN3(x1, ..., x3) ) = max{0, x3 - 2}
POL( apply2(x1, x2) ) = x1 + x2 + 3
POL( lambda2(x1, x2) ) = x2
POL( ren3(x1, ..., x3) ) = x3
POL( var1(x1) ) = 0
POL( if3(x1, ..., x3) ) = 0
if3(true, var1(K), var1(L)) -> var1(K)
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))